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Abstract. The densities of wave dislocations (or topological charge densities of wave
dislocations) in terms of the complex scalar wave are given from the definition of topological charges
of wave dislocations. The branch conditions for generating, annihilating, colliding, splitting and
merging of wave dislocations are obtained according to the properties of the complex scalar wave
itself. It is found that the velocities of wave dislocations are infinite when they are annihilating or
generating, which is obtained only from the topological properties of the complex scalar wave.

1. Introduction

Wave dislocations (phase singularities) in optical fields have drawn great interest because
they are of importance for understanding fundamental physics and have many important
applications. The generation, annihilation, collision, split and mergence of wave dislocations
have been studied intensively in many ways [1–20]. Berry, Nye and collaborators [9–20]
considered the scalar wave equation and proved the existence of wave dislocations by exhibiting
a number of special solutions of the scalar wave equation that have the dislocation properties,
which showed dislocations colliding, annihilating, generating, and so on. In this paper, we
will study the conditions for generating, annihilating, colliding, splitting and merging of
wave dislocations by making use of theφ-mapping topological current theory which plays an
important role in discussing the topological invariants and structure of physical systems [21–23]
and has been used to study the mathematical framework for wave dislocations in three-
dimensional space [24]. A useful condition for branch processes (generation, annihilation,
collision, split and mergence of wave dislocations) will be given, from which one can find the
positions of the branch points in light beams, that is, the branch points must be subject to the
constraint condition that the usual JacobianD(φ/x) vanishes. Then, according to the values
of the vector Jacobians of the complex scalar wave, the branch points are classified into two
types: limit points and bifurcation points; wave dislocations generate or annihilate at the limit
points and collide, split or merge at the bifurcation points of the complex scalar wave.

This paper is organized as follows: in section 2, the densities of wave dislocations in terms
of the complex scalar wave are given by means of theφ-mapping topological current theory.
The velocity field of wave dislocations in light beams is also obtained. In section 3, from the
topological properties of the complex scalar wave, the conditions for generating, annihilating,
colliding, splitting and merging of wave dislocations are obtained and several crucial cases of
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Figure 1. S is one cross section normal to thez-
axis. X(t) is the intersection curve between the
evolution surface of a wave dislocation and the
cross sectionS, i.e. the movement curve of the
wave dislocation on the cross sectionS.

branch process are discussed in detail. In section 4, we show several examples in the literature
that explicitly satisfy the branch conditions. We would like to emphasize, however, that the
conditions for branch processes are universal and all the branch processes must be subject to
them. We give our concluding remarks in section 5.

2. Densities of wave dislocations in light beams

Wave dislocations are topological objects and possess topological charges, which can be
attributed to the helicoidal spatial structure of the wavefront around a phase singularity.
This structure is similar to a crystal lattice defect, and therefore was first known as a wave
dislocation [9]. There are three types of dislocations: edge, screw and mixed edge–screw
dislocations. An edge dislocation is located along a line in the transverse plane and travels
with the wave. A screw dislocation is called an optical vortex, the essential property of
which is that the phase changes by 2πm on a closed circuit around it.m is called the
topological charge, which is positive for a right-screw helicoid (m > 0), and vice versa.
At the locations of these three kinds of dislocations the wave amplitude becomes zero and the
phase is indeterminate [25,26].

Let there be a complex scalar waveψ(Er, t) propagating along thez-axis in (3 + 1)-
dimensional space-time, in which there exist evolution surfaces formed by the movements
of the wave dislocations. For simplicity, let us take an arbitrary cross section normal to the
z-axis, i.e. (2 + 1 )-dimensional space-time with coordinatesx1 = x, x2 = y andx0 = t .
The intersection lines between the evolution surfaces and the cross section are just the motion
curves of the wave dislocations on the cross section (see figure 1). One thing to point out is
that if one takes the cross section everywhere along thez-axis, the motion properties of wave
dislocations will be given completely.

The complex scalar waveψ( Eρ, t) is denoted asψ( Eρ, t) = φ1( Eρ, t) + iφ2( Eρ, t), where
φ1( Eρ, t) andφ2( Eρ, t) can be denoted as two components of a two-dimensional vector field
Eφ = (φ1, φ2). The zero points of the complex scalar waveψ( Eρ, t), i.e.,

φ1(x1, x2, t) = 0 φ2(x1, x2, t) = 0 (1)

determine the positions of wave dislocations on the cross section. If the Jacobian determinant
D(φ/x) 6= 0, the solutions of equations (1) are generally expressed as

x1 = x1
l (t) x2 = x2

l (t) l = 1, 2, . . . , N (2)

which represent the motion curves ofN wave dislocationsEρl(l = 1, 2, . . . , N) on the cross
section, and which show the wave dislocations moving in (2 + 1)-dimensional space-time.
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The topological charge of thel th wave dislocation (or the generalized winding number
Wl of Eφ at thel th zero pointEρl) is defined by the Gauss mapn: ∂6l −→ S1 [21]:

Wl = 1

2π

∫
∂6l

n∗(εabna dnb) na = φa/‖φ‖ (3)

wheren∗ is the pullback of Gauss mapn, ∂6l is the boundary of a neighbourhood6l of Eρl
and6l ∩ 6m = ∅ for 6m is the neighbourhood of another arbitrary wave dislocationEρm. In
topology it means that, when the pointEρ covers∂6l once, the unit vectorEn will cover S1, or
Eφ covers the corresponding regionWl times, which is a topological invariant. Using Stokes’
theorem in the exterior differential form, one can deduce that

Wl = 1

2π

∫
6l

εabε
jk∂jn

a∂kn
b d2x j, k = 1, 2. (4)

So, it is clear that the densities of wave dislocations (or the topological charges densities) are
just

ρ = 1

2π
εabε

jk∂jn
a∂kn

b (5)

which is the time component of the topological current of the two-dimensional vector field
Eφ [27]

J i = 1

2π
εijkεab∂jn

a∂kn
b i = 0, 1, 2. (6)

Obviously, the topological current is identically conserved,

∂iJ
i = 0. (7)

Following theφ-mapping topological current theory, it can be rigorously proved that

J i = δ2( Eφ)Di

(
φ

x

)
(8)

where the JacobiansDi(φ/x) are defined asDi(φ/x) = 1
2ε
ijkεab∂jφ

a∂kφ
b, in whichD0(φ/x)

is the usual two-dimensional JacobianD(φ/x). Now, the densities of wave dislocations are
expressed in terms of the complex scalar waveψ( Eρ, t):

ρ = δ2( Eφ)D
(
φ

x

)
. (9)

Here, one can see that the densities of wave dislocations in terms of the complex scalar wave (9)
are obtained directly from the definition of topological charges of wave dislocations (winding
numbers of zero points of the complex scalar wave), which is useful because it avoids the
problem of having to specify the position of the wave dislocations explicitly, and is more
general than usually considered.

According to theδ-function theory and theφ-mapping topological current theory, one can
prove that

δ2( Eφ) =
N∑
l=1

βl

|D(φ/x) Eρl |
δ2( Eρ − Eρl) (10)

where the positive integerβl is called the Hopf index [22] of mapx −→ φ. The meaning of
βl is that when the pointEρ covers the neighbourhood6l of the zeroEρl once, the vector field
Eφ covers the corresponding regionβl times. By substituting equation (10) into ( 9), we obtain
that

ρ =
N∑
l=1

βlηlδ
2( Eρ − Eρl) (11)
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whereηl is the Brouwer degree [22]:ηl = sgnD(φ/x) Eρl = ±1. One can find the relation
between Hopf indexβl , Brouwer degreeηl and winding numberWl : Wl = βlηl from equations
(4) and (11). It is obvious that equation (11) representsN isolated wave dislocations of
which thel th wave dislocation is charged with the topological chargeβlηl . For the case of
optical vortices (screw dislocations), the results coincide with [9, 26, 28], and have a more
straightforward and strict significance. Thel th optical vortex in light beams shows itself as a
system ofβl helicoids, nested on the same axis,ηl is +1 for a counter-clockwise helicoid and
−1 for a clockwise one.

The current densities of wave dislocations (N wave dislocations with the topological
chargesβlηl moving in space) can be written in the same form as the current densities in
hydrodynamics:

J i =
N∑
l=1

βlηlδ
2[ Eρ − Eρl(t)] dxil

dt
. (12)

According to equation (7), the topological charges of wave dislocations are conserved:

∂ρ

∂t
+ E∇ · EJ = 0 (13)

which is only the topological property of the complex scalar wave. Following theφ-mapping
topological current theory, we can also get the velocity of thel th wave dislocation

Eυl = dEρl
dt
=
ED(φ/x)
D0(φ/x)

∣∣∣∣
Eρl

ED(φ/x) = [D1(φ/x),D2(φ/x)]

from which one can identify the velocity field of wave dislocations as

Eυ( Eρ, t) =
ED(φ/x)
D(φ/x)

(14)

where it is assumed that the velocity field is used inside expressions multiplied by the wave
dislocations locatingδ function. The expressions given by equation (14) for the velocity of
wave dislocations are useful because they avoid the problem of having to specify the positions
of the wave dislocations explicitly. The positions are implicitly determined by the zeros of
the complex scalar wave. So, the location and the velocity of thelth wave dislocation are
determined by thel th zeroEρl(t) and the vector fieldEυl on Eρl(t) respectively.

The solutions (2) of equations (1) are based on the condition that the Jacobian
D0(φ/x)| Eρl 6= 0. WhenD0(φ/x)| Eρl = 0, i.e. ηl is indefinite, the above results (2) will
change in some way. It is interesting to discuss what will happen and what the correspondence
in physics is when this condition fails.

3. Branch conditions for generating, annihilating, colliding, splitting and merging of
wave dislocations

When the usual JacobianD0(φ/x) = 0 at some points alongEρl , it is shown that there exist
several crucial cases of branch process at these points, which are called branch points. There are
two kinds of branch points, namely limit points and bifurcation points. Each kind corresponds
to different cases of branch processes. In the following will discuss them in detail.

First, we study the case that the zeros of the complex scalar waveψ include some limit
points. The limit points are determined by equations (1) and

D0

(
φ

x

) ∣∣∣∣
( Eρl ,t)
= 0 D1

(
φ

x

) ∣∣∣∣
( Eρl ,t)
6= 0 (15)
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Figure 2. (a) The origin of two wave dislocations. (b) Two wave dislocations annihilate in collision
at the limit point.

or

D0

(
φ

x

) ∣∣∣∣
( Eρl ,t)
= 0 D2

(
φ

x

) ∣∣∣∣
( Eρl ,t)
6= 0. (16)

For simplicity, we only consider case (15) and denote one of the limit points as( Eρl, t∗). Taking
account of (15) and using the implicit function theorem, we have a unique solution of equations
(1) in the neighbourhood of the limit point( Eρl, t∗):

t = t (x1) x2 = x2(x1) (17)

with t∗ = t (x1
l ). From (15), it is easy to see

dt

dx1

∣∣∣∣
( Eρl ,t∗)

= 0 i.e.
dx1

dt

∣∣∣∣
( Eρl ,t∗)

= ∞. (18)

Thus, the Taylor expansion of equation (17) in the neighbourhood of the limit point( Eρl, t∗) is

t − t∗ = 1

2

d2t

(dx1)2

∣∣∣∣
( Eρl ,t∗)

(x1− x1
l )

2 (19)

which is a parabola in thex1 − t plane. From (19) we can obtain the branch solutions of
wave dislocations at the limit point. If d2t/( dx1 )2|( Eρl ,t∗) > 0, we have the branch solutions
for t > t∗ (figure 2(a)), otherwise, we have the branch solutions fort 6 t∗ (figure 2(b)).
The former is related to the origin of the wave dislocations, and the latter is related to the
annihilation of the wave dislocations. One result of equation (18), that the velocity of wave
dislocations is infinite when they are annihilating or generating, which is gained only from the
topology of the complex scalar wave, agrees with that obtained by Nye and Berry [9].

Since the topological current is identically conserved, the topological charges of these
two generated or annihilated wave dislocations must be opposite at the limit point, i.e.
β1η1 + β2η2 = 0, which shows the generation and the annihilation of a pair of dislocations.
For the case of optical vortices, it corresponds to the generation and annihilation of the vortex–
antivortex pair.



4948 Y Duan et al

Then, let us turn to the other case, in which the restrictions of equations (1) are

Dj

(
φ

x

) ∣∣∣∣
( Eρl ,t)
= 0 j = 0, 1, 2. (20)

These three restrictive conditions will lead to an important fact that the functional relationship
betweent andx1 or x2 is not unique in the neighbourhood of( Eρl, t∗). In our topological
current theory, this fact is easily seen from

dx1

dt
= D1(φ/x)

D0(φ/x)

∣∣∣∣
( Eρl ,t∗)

dx2

dt
= D2(φ/x)

D0(φ/x)

∣∣∣∣
( Eρl ,t∗)

(21)

which under (20) directly shows that the direction of the integral curve of (21) is indefinite at
( Eρl, t∗). Therefore, the very point( Eρl, t∗) is called a bifurcation point of the complex scalar
waves. With the aim of finding the different directions of all branch curves of equations (1) at
the bifurcation point, we suppose that

∂φ1

∂x2

∣∣∣∣
( Eρl ,t∗)

6= 0. (22)

And, according to theφ-mapping topological current theory, the Taylor expansion of the
solution of equations (1) in the neighbourhood of the bifurcation point( Eρl, t∗) can be expressed
as [21]:

α(x1− x1
l )

2 + 2β(x1− x1
l )(t − t∗) + γ (t − t∗)2 = 0 (23)

which leads to

α

(
dx1

dt

)2

+ 2β
dx1

dt
+ γ = 0 (24)

and

γ

(
dt

dx1

)2

+ 2β
dt

dx1
+ α = 0 (25)

whereα, β andγ are three constants. The solutions of equations (24) or (25) give different
directions of motion of the wave dislocations at the bifurcation point. There are four kinds of
important situations.

First,α 6= 0, 1 = 4(β2 − αγ ) > 0, from equation (24) we get two different solutions:
dx1/dt |1,2 = (−β ±

√
β2 − αγ )/α which is shown in figure 3, where two wave dislocations

collide at the bifurcation point( Eρl, t∗). This shows that two wave dislocations meet and then
depart at the bifurcation point. Secondly,α 6= 0,1 = 4(β2 − αγ ) = 0, there is only one
solution: dx1/dt = −β/α, which includes three important cases shown in figure 4: (a), two
wave dislocations tangentially collide at the bifurcation point. (b) Two, two wave dislocations
merge into one wave dislocation at the bifurcation point. (c), one wave dislocation splits into
two wave dislocations at the bifurcation point. Thirdly,α = 0, γ 6= 0, 1 = 4(β2− αγ ) > 0,
from equation (25) we have dt/dx1 = 0 and−2β/γ . As shown in figure 5, there are two
important cases: (a) One wave dislocation splits into three wave dislocations at the bifurcation
point. (b) Three wave dislocations merge into one at the bifurcation point. Finally,α = γ = 0,
equations (24) and (25) give respectively dx1/dt = 0 and dt/dx1 = 0. This case is obvious
as in figure 6, which is similar to the third situation.

Now, the branch conditions for generating, annihilating, colliding, splitting and merging
of wave dislocations are given. WhenD0(φ/x)|( Eρl ,t) = 0 andD1(φ/x)|( Eρl ,t) 6= 0, or
D0(φ/x)|( Eρl ,t) = 0 andD2(φ/x)|( Eρl ,t) 6= 0, two wave dislocations generate or annihilate
(see figure 2). WhenDj(φ/x)|( Eρl ,t) = 0, j = 0, 1, 2, two wave dislocations collide (see
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Figure 3. Two wave dislocations collide with different
directions of motion at the bifurcation point.

figures 3 and 4(a)), one wave dislocation splits into two or three wave dislocations (see
figures 4(c), 5(a) and 6(b)), or several wave dislocations merge into one wave dislocation
(see figures 4(b), 5(b) and 6(a)). The identical conservation of the topological charges shows
the sum of the topological charges of final wave dislocation(s) must be equal to that of the
initial wave dislocation(s) at the bifurcation point.

4. Application of the branch conditions

The branch conditions obtained in the last section can be used to find a branch point and to
determine which branch process will happen at the branch point. We will briefly review these
branch conditions, with particular reference to the applications of the branch conditions. We
give three simple examples to show how to use the branch conditions.

One example given by Nye and Berry [9] is

ψ(x, y, t) = {ωt − ik2x2 + (A + iB)k(x − iy} exp[i(kz− ωt)] (26)

wherex0 = t , x1 = x andx2 = y. The positions of the wave dislocations are determined by

φ1(x, y, t) = ωt +Akx +Bky = 0 φ2(x, y, t) = −k2x2 +Bkx − Aky = 0 (27)

from which one can find the branch points satisfying

D0

(
φ

x

)
= D

(
φ1, φ2

x, y

)
= det

(
Ak Bk

Bk − 2k2x −Ak
)
= 0 (28)

i.e.

D0

(
φ

x

)
= k2(−A2 − B2 + 2Bkx) = 0. (29)

The solution of equations (27) and (29) gives a branch point:

x∗ = A2 +B2

2Bk
y∗ = B4 − A4

4AB2k
t∗ = −(A

2 +B2)2

4ABω
. (30)

Since the other two Jacobians at the branch point

D1

(
φ

x

) ∣∣∣∣
(x∗,y∗,t∗)

= D
(
φ1, φ2

y, t

) ∣∣∣∣
(x∗,y∗,t∗)

= Akω 6= 0 (31)
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Figure 4. Wave dislocations have the same direction of motion. (a) Two wave dislocations
tangentially collide at the bifurcation point. (b) Two wave dislocations merge into one wave
dislocation at the bifurcation point. (c) One wave dislocation splits into two wave dislocations at
the bifurcation point.

and

D2

(
φ

x

) ∣∣∣∣
(x∗,y∗,t∗)

= D
(
φ1, φ2

t, x

) ∣∣∣∣
(x∗,y∗,t∗)

= (B − 2kx∗)kω 6= 0 (32)

the branch point(x∗, z∗, t∗) is a limit point. From equations (27 ), one can get that

d2t

dx2

∣∣∣∣
(x∗,y∗,t∗)

= 2Bk2

Aω
(33)

wherek2 > 0 andω > 0. According to equation (19), ifAB > 0, i.e. d2t/dx2 |(x∗,z∗,t∗) > 0,
two wave dislocations are created (see figure 2(a)) and ifAB < 0, i.e. d2t/dx2 |(x∗,y∗,t∗) < 0,
two wave dislocations annihilate (see figure 2(b)) at the limit point(x∗, y∗, t∗), which agree
with the results obtained in [9].



Branch conditions for wave dislocations in light beams 4951

Figure 5. (a) One wave dislocation splits into three wave dislocations at the bifurcation point. (b)
Three wave dislocations merge into one wave dislocation at the bifurcation point.

Figure 6. This case is similar to figure 5. (a) Three wave dislocations merge into one wave
dislocation at the bifurcation point. (b) One wave dislocation splits into three wave dislocations at
the bifurcation point.

It is also easy to find the branch point in another complex scalar wave [9]

ψ(x, z, t) = {Akx + k2x2 + iB(kz− ωt)2 + ikz} exp[i(kz− ωt)] (34)

whose wave dislocations are determined by

φ1(x, z, t) = Akx + k2x2 = 0 φ2(x, z, t) = B(kz− ωt)2 + kz = 0 (35)

and whose branch points satisfy equation (35) and

D0

(
φ

x

)
= D

(
φ1, φ2

x, z

)
= det

(
Ak + 2k2x 0

0 k + 2Bk(kz− ωt)
)
= 0 (36)
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wherex0 = t , x1 = x andx2 = z. We can obtain two branch points

t∗1,2 =
1

4Bω
z∗1,2 = −

1

4Bk
x∗1,2 = 0 and − A/k (37)

at which the other two Jacobians are

D1

(
φ

x

) ∣∣∣∣
(x∗,z∗,t∗)

= det

(
0 0

k + 2Bk(kz∗ − ωt∗) −2Bω(kz∗ − ωt∗)
)
= 0 (38)

and

D2

(
φ

x

) ∣∣∣∣
(x∗,z∗,t∗)

= det

(
0 Ak + 2k2x∗

−2Bω(kz∗ − ωt∗) 0

)
6= 0. (39)

So,(x∗1, z
∗
1, t
∗
1 ) and(x∗2, z

∗
2, t
∗
2 ) are two limit points, near which two wave dislocations generate

or annihilate.
From the above examples, the branch conditions appear to be complicated compared

with [9] in that these examples are simpler, but the actual situations on wave dislocations in
experiments may be much more complicated than these examples.

The limit points are subject to the branch conditions, and so are the bifurcation points.
There is an example bearing a bifurcation point given by Nye and Berry [9]:

ψ(x, z, t) = { 13k3x3 +B(kz− ωt) + ik2xz} exp[i(kz− ωt)]. (40)

Wave dislocations are located at the space-time point satisfying

φ1(x, z, t) = 1
3k

3x3 +B(kz− ωt) = 0 φ2(x, z, t) = k2xz = 0. (41)

Branch point should satisfy not only equation (41) but also

D0

(
φ

x

)
= D

(
φ1, φ2

x, z

)
= det

(
k3x2 Bk

k2z k2x

)
= 0 (42)

that is,

k5x3− Bk3z = 0 (43)

thus, we obtain a branch point

t∗ = 0 z∗ = 0 x∗ = 0 (44)

at which the values ofD1(φ/x) andD2(φ/x) are calculated as follows:

D1

(
φ

x

) ∣∣∣∣
(x∗,z∗,t∗)

= det

(
Bk −Bω
k2x∗ 0

)
= Bk2ωx∗ = 0 (45)

D2

(
φ

x

) ∣∣∣∣
(x∗,z∗,t∗)

= det

(−Bω k3x∗2

0 k2z∗

)
= −Bk2ωz∗ = 0. (46)

SinceD1(φ/x) andD2(φ/x) both are equal to zero, this point must be a bifurcation point
according to our theory. In the neighbourhood of the bifurcation point two wave dislocations
collide at(x∗, z∗, t∗) (see figure 3).

From these three examples we see how to use the branch conditions. One can apply them
into both numerical and experimental branch processes of wave dislocations. These conditions
will help those experts in optics to find a branch point and the concrete branch process in the
neighbourhood of it, and to give a deep insight into wave dislocations.
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5. Conclusions

First, the densities of wave dislocations are obtained directly from the definition of topological
charges of wave dislocations (winding numbers of zero points of the two-dimensional vector
field, i.e. complex scalar wave in light beams). Secondly, the branch conditions for generating,
annihilating, colliding, splitting and merging of wave dislocations are obtained. When
D0(φ/x)|( Eρl ,t) = 0 andD1(φ/x)|( Eρl ,t) 6= 0, orD0(φ/x)|( Eρl ,t) = 0 andD2(φ/x)|( Eρl ,t) 6= 0,
two wave dislocations generate or annihilate. WhenDj(φ/x)|( Eρl ,t) = 0, j = 0, 1, 2, the
wave dislocations collide, split or merge. Thirdly, we find the result that the velocity of wave
dislocations is infinite when they are annihilating or generating, which is obtained only from
the topological properties of the complex scalar waves. Last, we apply the branch conditions
in some simple examples in the literature and hope they have widespread applications in the
future.
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